Concentration gradient induced morphology evolution of silica nanostructure growth on photoresist-derived carbon micropatterns

نویسندگان

  • Dan Liu
  • Tielin Shi
  • Shuang Xi
  • Wuxing Lai
  • Shiyuan Liu
  • Xiaoping Li
  • Zirong Tang
چکیده

The evolution of silica nanostructure morphology induced by local Si vapor source concentration gradient has been investigated by a smart design of experiments. Silica nanostructure or their assemblies with different morphologies are obtained on photoresist-derived three-dimensional carbon microelectrode array. At a temperature of 1,000°C, rope-, feather-, and octopus-like nanowire assemblies can be obtained along with the Si vapor source concentration gradient flow. While at 950°C, stringlike assemblies, bamboo-like nanostructures with large joints, and hollow structures with smaller sizes can be obtained along with the Si vapor source concentration gradient flow. Both vapor-liquid-solid and vapor-quasiliquid-solid growth mechanisms have been applied to explain the diverse morphologies involving branching, connecting, and batch growth behaviors. The present approach offers a potential method for precise design and controlled synthesis of nanostructures with different features.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbonization-assisted integration of silica nanowires to photoresist-derived three-dimensional carbon microelectrode arrays.

We propose a novel technique of integrating silica nanowires to carbon microelectrode arrays on silicon substrates. The silica nanowires were grown on photoresist-derived three-dimensional carbon microelectrode arrays during carbonization of patterned photoresist in a tube furnace at 1000 °C under a gaseous environment of N(2) and H(2) in the presence of Cu catalyst, sputtered initially as a th...

متن کامل

Effect of Concentration and Thermal Treatment on the Properties of Sol-Gel Derived CuO/SiO2 Nanostructure

Various concentrations of copper are embedded into silica matrix to xerogel form using copper source - Cu(NO3)2∙3H2O. The xerogel samples are prepared by hydrolysis and condensation of tetraethyl orthosilicate (TEOS) by the sol-gel method  and with determination of new molar ratio of components H2O/TEOS to be 6.2. In this investigation, the necess...

متن کامل

A combined size sorting strategy for monodisperse plasmonic nanostructures.

The fabrication of highly monodisperse silica coated Au NPs by the microemulsion approach and the selection of the nanostructure morphology have been described. Several experimental conditions, synthetic parameters and post-preparative strategies such as reaction time, precursor concentration, size selection techniques and NP surface treatments have been suitably investigated in order to fabric...

متن کامل

Crude Oil Interfacial Tension Reduction and Reservoir Wettability Alteration with Graphite or Activated Carbon/Silica Nanohybrid Pickering Emulsions

In this research, two carbon structures silica nanohybrids Pickering emulsions were prepared. Graphite and activated carbon were carbon allotropes with different morphologies of laminar and spherical, respectively. The effect of carbon morphology investigated on the related silica nanohybrids Pickeringemulsions for C-EOR. Therefore, nanohybrids were prepared with graphite and activated carbon t...

متن کامل

Preparation and Characterization of Electrolessly Deposited Platinum and Palladium Nanoparticles on Pyrolyzed Photoresist Films on Silicon Substrates

The effects of metal depositions on pyrolyzed photoresist films (PPF) grown on silicon substrates were investigated. A silicon chip, spin-coated with a positive photoresist was pyrolyzed through heating to form a PPF, or a conductive carbon film. For increasing periods of time, nanometersized metal particles of platinum and palladium were spontaneously deposited on conductive carbon films by im...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012